Research on the transfer rate of H⁺ and chemical batteries

Saga prefectural Saga Nishi senior high school

Content

- Experiment 1
- The measurement of transfer rate of H⁺

- Experiment 2
- Application to chemical batteries

Experiment 1

ionization $HCI \rightarrow H^+ + CI^-$

agar

Experiment 1 Research Method

1. Put HCl on the agar

2. Apply voltage and Record with PC

Experiment 1 Research Method

Before

Calculate the transfer rate visually

Experiment 1 Focus on the difference in viscosity of the agar viscosity acrylic stee

Hypothesis 1 $v_i =$

v_i(m/s):moving speed of charged particles Q(C):electric charge E(N/C):electric field f(N•s/m):drag coefficient

Hypothesis 1

$f = k\eta$

k(m):coefficient defined by shape and size of particles η(Pa • s):coefficient of viscosity of medium

Experiment 2 Try to apply the result to a chemical battery

Voltaic battery

Refrigerate and measure the voltage

Result 1

Result 1

Easy to deteriorate

Easy to deteriorate

Conclusion

Experiment 1

The smaller the viscosity is, the larger v_i becomes.

Experiment 2

The voltage of the chemical battery doesn't depend on its viscosity.

Future prospect

Measure v_i and viscosity more accurately

sourcehttps://www.sagaitc.jp/_1018/_1008/_1002.html

Thank you for listening!

